

# Search for Scalar Top and Scalar Bottom Quarks at the Tevatron

# Shaohua Fu Fermilab

For the DØ and CDF collaborations

PANIC 05, Oct. 24-28 Santa Fe, NM

### Tevatron at Fermilab – Run II







- Run II goal: 4 ~ 9 fb<sup>-1</sup> in 2009
- Analyses presented here use up to 340 pb<sup>-1</sup>

# DØ and CDF Detectors





- Both general purpose detectors well understood and highly efficient
  - Precise tracking with silicon vertex detector
  - Excellent calorimeters and muon chambers coverage

# Scalar Top and Scalar Bottom



### Supersymmetry

- SUSY overcomes some of the theoretical problems in the SM by introducing new degrees of freedom
- Every SM particle has supersymmetric partners:
  - quarks/leptons ↔ 0-spin squarks/sleptons, gauge bosons ↔ ½-spin gauginos
- R-parity:  $R_p = (-1)^{3B+L+2S} = +1$  (SM); = -1 (SUSY)
  - If R-parity is conserved (RPC), the LSP is stable  $\Rightarrow$  a good dark matter candidate
  - Small violation of R-parity is not excluded (RPV) ⇒ additional couplings and the LSP decays into SM particles

### Stop and Sbottom (in generic MSSM model)

- Large top mass ⇒ substantial mixing between SUSY partners of the L- and R-handed top quark; thus the lightest stop could be the lightest squark
- Sbottom is also expected to be light at large tanβ
- Stop/sbottom can be pair produced through gluon fusion and quark-antiquark annihilation at the Tevatron, and stop can decay in various modes

### Search Channels



### Scalar top

R-parity conservation decay modes:







- Decay channel  $\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}$  (on-shell chargino) is difficult to explore at the Tevatron due to the high chargino mass limit of LEP2
- Decay channel  $\tilde{t}_1 \to c\tilde{\chi}_1^0$  has been extensively explored, but it might not be the dominant decay for stop masses accessible at the Tevatron
- 3-body decays via virtual chargino:
  - Decay channel  $\tilde{t}_1 \rightarrow b\tilde{l} \nu$  is almost closed for most of the stop mass within the Tevatron reach, due to slepton mass limit of LEP2
  - Decay  $\widetilde{t}_1 \to bW\widetilde{\chi}_1^0$  dominates if the sneutrino mass is much greater than the W mass, but it has very limited potential for the Tevatron
  - We explored decay channel  $\tilde{t}_1 \to bl\tilde{\nu}$  which dominates if the sneutrino mass is of the same order as the W mass. If  $\tilde{\chi}_1^0$  is the LSP:  $\tilde{\nu} \to \nu \tilde{\chi}_1^0$
- R-parity violation decay modes:  $\tilde{t}_1 \rightarrow b \tau$

### Search Channels



#### Scalar bottom

■ Dominant decay mode:  $\tilde{b}_1 \to b \tilde{\chi}_1^0$  (assuming  $\tilde{\chi}_1^0$  is the LSP)



- Direct production of sbottom pair, decaying into  $\tilde{b} = b \bar{b} = b \bar{b$
- Sbottom quarks from gluino decays  $\tilde{g} \to \bar{b}\tilde{b} \to \bar{b}b\tilde{\chi}_1^0$



# Search for Stop: $\tilde{t}_1 \rightarrow bl\tilde{v}$



- Search in channel  $\tilde{t}_1^+ \overline{\tilde{t}_1^-} \to b \bar{b} \mu^+ \mu^- \tilde{v} \bar{\tilde{v}}$
- Integrated luminosity ( $\mathcal{L}$ ) = 339 pb<sup>-1</sup>

#### Main background

- $Z/\gamma^* \rightarrow \mu\mu / \tau\tau$
- QCD multi-jet
- $\Upsilon(1S) \rightarrow \mu\mu$
- *WW*
- Top pair

#### Selection

- $p_T(\mu_1) > 8 \text{ GeV}, p_T(\mu_2) > 6 \text{ GeV}$
- 2-dim. cut on  $ME_T$ ,  $\Delta\phi(\mu_1, ME_T)$  plane  $(ME_T > 20-50 \text{ GeV})$
- At least 1 jet with  $E_T(j)>15$  GeV
- b-tag based on the impact parameter of the tracks in the jet
- $m_{\mu\mu} \notin [75,120] \text{ GeV for ME}_T < 50 \text{ GeV}$

#### After cuts

- Top pair dominates background (2.3 out of 2.9 events)
- 1 event left in data (signal ~3 events)

• Use spectra of  $H_T = \sum_{jets} |E_T|$  to discriminate between top and stop-signal



| H <sub>T</sub> bin (GeV) | Background      | Data |
|--------------------------|-----------------|------|
| [0, 40]                  | $0.11 \pm 0.03$ | 0    |
| [40, 80]                 | $0.89 \pm 0.43$ | 0    |
| [80, 120]                | $0.75 \pm 0.13$ | 0    |
| [120, 160]               | $0.56 \pm 0.07$ | 1    |
| > 160                    | $0.57 \pm 0.08$ | 0    |



# Search for Stop: $\tilde{t}_1 \rightarrow bl\tilde{v}$



8

- Obtain exclusion limits assuming  $BR(\tilde{t}_1 \rightarrow bl\tilde{v}) = 100\%$  and equal BR in three lepton flavors
- Improvement w.r.t. Run I in low  $\Delta m(\text{stop, sneutrino})$  region due to low  $p_T(\mu)$  requirement
- Preferred channel: eμ (+jets) 2×BR,
   much lower Z/Drell-Yan background
   expect significant improvement by
   new analysis in eμ channel



95% CL excluded region. Also shown is DØ Run I result with 108 pb<sup>-1</sup> luminosity in the eµ final state.



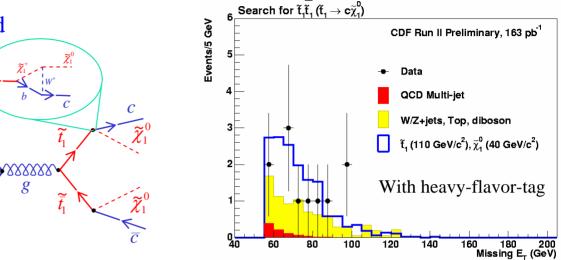
# Search for Stop: $\tilde{t}_1 \to c\tilde{\chi}_1^0$



• Assume  $\tilde{\chi}_1^0$  is the stable LSP, and

$$BR(\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0) = 100\%$$

- $\mathcal{L} = 163 \text{ pb}^{-1}$
- Background
  - QCD multi-jet
  - W/Z+jets, top, di-boson




- $E_T(j_1)>35 \text{ GeV}, E_T(j_2)>25 \text{ GeV}$
- $ME_T > 55 \text{ GeV}$
- No isolated lepton (e,  $\mu$ ), veto  $\tau$
- Heavy-flavor-tagging on one charm jet (based on track impact parameter)

#### Result

 Upper cross section limits, but no additional exclusion in mass plane

| Heavy-flavor-tag | No           | Yes           |
|------------------|--------------|---------------|
| Background       | $105 \pm 12$ | $8.3 \pm 2.3$ |
| Data             | 119          | 11            |





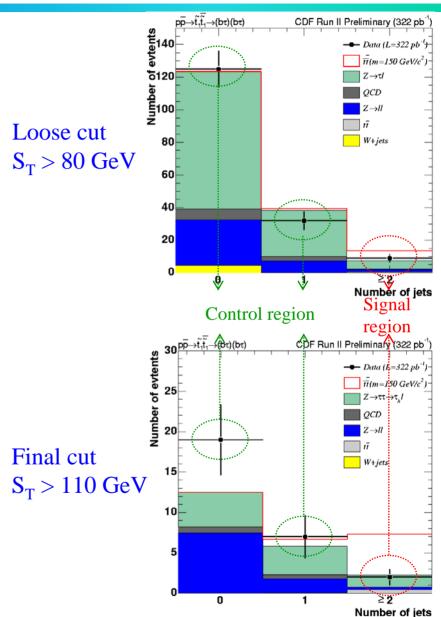
CDF Run II projections based on integrated luminosity = 1, 2, 4 fb<sup>-1</sup>



# Search for Stop (RPV): $\tilde{t}_1 \rightarrow b \tau$



- Search channel  $\tilde{t}_1 \overline{\tilde{t}_1} \to b \overline{b} \tau_{lep} \tau_{had}$
- $\mathcal{L} = 332 \text{ pb}^{-1}$
- Background
  - QCD
  - W/Z + jets
  - Top, di-boson


#### Selection

- 1 lepton (e,  $\mu$ )  $p_T(l) > 10 \text{ GeV (from } \tau_{lep})$
- 1  $\tau_{had} p_{T}(\tau) > 15 \text{ GeV}$
- At least 2 jets  $E_T(j) > 20 \text{ GeV}$
- Veto Z, veto  $W (m_T(l, ME_T) < 35 \text{ GeV})$
- Final cut  $S_T = p_T(l) + p_T(\tau) + ME_T > 110 \text{ GeV}$

#### Result

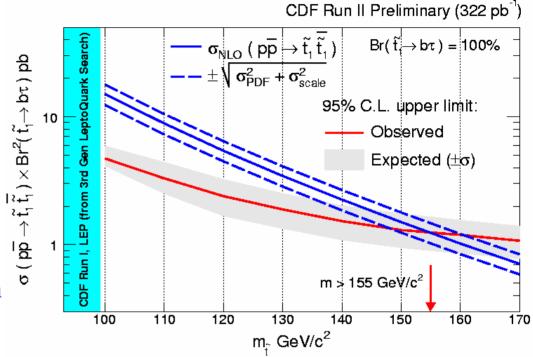
■  $N_{jet} = 0$ , 1 are control regions,  $N_{jet} \ge 2$  is signal region

| (Signal region) | $e + \tau$ | $\mu + \tau$    | Sum             |
|-----------------|------------|-----------------|-----------------|
| Background      | 1.27 ±0.29 | $0.99 \pm 0.35$ | $2.26 \pm 0.46$ |
| Data            | 1          | 1               | 2               |





# Search for Stop (RPV): $\tilde{t}_1 \rightarrow b \tau$




Obtain limits assuming

$$BR(\tilde{t}_1 \rightarrow b \tau) = 100\%$$

- Stop mass limit
  - $m_{stop} > 155 \text{ GeV (nominal)}$
  - m<sub>stop</sub> > 151 GeV (conservative)
- Since the stop pair production process is very similar to the pair production of the third generation scalar leptoquark  $(LQ_3)$

$$p\overline{p} \rightarrow LQ_3LQ_3 \rightarrow bb \ \tau\tau$$
  
and their NLO cross sections are  
very close to each other, the same  
mass limit is applicable to  $LQ_3$ 



CDF Run I:  $m_{stop} > 122 \text{ GeV } (L = 106 \text{ pb}^{-1})$ 



# Search for Sbottom (Direct Production)



- Search channel  $\tilde{b} \, \overline{\tilde{b}} \to b \bar{b} \, \tilde{\chi}_1^0 \, \overline{\tilde{\chi}}_1^0$
- $\mathcal{L} = 310 \text{ pb}^{-1}$
- Background
  - W/Z + jets
  - Top, di-boson
  - QCD vanishes at large ME<sub>T</sub>
- Selection
  - 2 jets acoplanar (3<sup>rd</sup> jet allowed), ME<sub>T</sub>

000000

- Veto events with isolated e,  $\mu$ , track  $(\tau)$
- Single *b*-tag
- Optimized cuts depending on sbottom mass:  $E_T(j_1) > 40-70 \text{ GeV}$ ,  $E_T(j_2) > 15-40 \text{ GeV}$ ,  $ME_T > 60-100 \text{ GeV}$

| Cuts                                                           | Before <i>b</i> -tag    | Opt. low                   | Opt. med.                  | Opt. high                   |
|----------------------------------------------------------------|-------------------------|----------------------------|----------------------------|-----------------------------|
| Background                                                     | $1335 \pm 48$           | $38.6 \pm 2.8$             | $19.6 \pm 1.7$             | $4.40 \pm 0.44$             |
| Data                                                           | 1433                    | 36                         | 15                         | 2                           |
| Signal for $(m_{\widetilde{b}}, m_{\widetilde{\chi}_1^0}) GeV$ | 68.8 ± 2.3<br>(140, 80) | $35.0 \pm 1.2$ $(140, 80)$ | $21.6 \pm 0.7$ $(160, 75)$ | $6.10 \pm 0.17$ $(205, 60)$ |





After *b*-tag, optimized cuts low set



# Search for Sbottom (Direct Production)



- Obtain exclusion limits assuming  $BR(\tilde{b} \to b \tilde{\chi}_1^0) = 100\%$
- Significant improvement compared to the previous measurements
- Future improvement: double b-tag, better Jet Energy Scale and optimization of E<sub>T</sub>(j), ME<sub>T</sub> cuts



95% CL exclusion contour



# Search for Sbottom (from Gluino Decay)



| Char | nnel $\tilde{g}\tilde{g}$ – | <i>→ b̃ b̃ bb -</i> | $ ightarrow b \overline{b} b \overline{b} \widetilde{\chi}_1^0 \overline{\widetilde{\chi}}_1^0$ |
|------|-----------------------------|---------------------|-------------------------------------------------------------------------------------------------|
|------|-----------------------------|---------------------|-------------------------------------------------------------------------------------------------|

$$BR(\tilde{g} \rightarrow \tilde{b} b) = 100\%$$

•  $\mathcal{L} = 156 \text{ pb}^{-1}$ 

#### Background

- QCD multi-jet,  $b\overline{b}$
- W/Z+jets, top, di-boson

| q                | $\tilde{\tilde{g}}_{1}$      |        |
|------------------|------------------------------|--------|
|                  | $\mathfrak{M}$               |        |
|                  | g                            | –<br>b |
| $\sqrt{\bar{q}}$ | $\widetilde{\mathfrak{b}}_1$ | 0      |
|                  | <b>→</b> 1                   | )      |

#### Selection

- At least 3 jets  $E_T(j) > 15 \text{ GeV}$
- $\blacksquare ME_{\rm T} > 80 \text{ GeV}$
- Angular cuts between jets and ME<sub>T</sub>
- Veto leptons (e,  $\mu$ ,  $\tau$ )
- One or more jets *b*-tagged



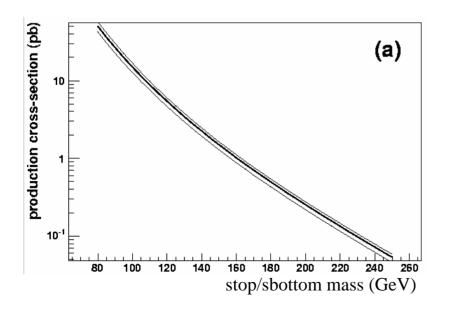


| # <i>b</i> -tag | $N_{b-\text{tag}} = 1$ | $N_{b-tag} \ge 2$ |
|-----------------|------------------------|-------------------|
| Background      | $16.4 \pm 3.7$         | $2.6 \pm 0.7$     |
| Data            | 21                     | 4                 |



95% CL exclusion, mass limit set up to:  $m(\tilde{g}) > 280 GeV, m(\tilde{b}) > 240 GeV$ 

### **Conclusions**




- DØ and CDF have searched for scalar top and scalar bottom quarks in various channels, using integrated luminosity of up to 340 pb<sup>-1</sup>
  - Assuming one dominating decay channel and interpreting exclusion in terms of masses of stop/sbottom and decay products
- In some channels, substantial improvement over Run I results and extension of LEP excluded regions.
  - Especially in RPV stop search and in sbottom searches
- We are now analyzing the 1fb<sup>-1</sup> data, hoping for a discovery; otherwise there will be substantial improvement of the limits





- DØ *b*-tagging Jet lifetime probability (JLIP)
  - Use the signed impact parameter significance of tracks associated to a jet ( $\Delta R$ <0.5 cone matching) to identify jets with long lived particles (mostly b-jets)
- DØ: stop  $\rightarrow b + \mu$  + sneutrino





#### After pre-selection





#### • CDF: stop $\rightarrow c$ + neutralino





#### ■ CDF RPV: stop $\rightarrow b + \tau$







#### DØ: sbottom direct production





#### CDF: sbottom from gluino decay

#### Control region (≥1 lepton) for cross check



